Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

William Henderson, Brian K. Nicholson* and Dong C. Chung

Chemistry Department, University of Waikato, Private Bag 3105, Hamilton, New Zealand

Correspondence e-mail: b.nicholson@waikato.ac.nz

Key indicators

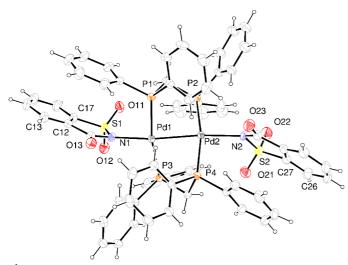
Single-crystal X-ray study $T=168~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.004~\mathrm{\mathring{A}}$ R factor = 0.025 wR factor = 0.068 Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[μ -bis(diphenylphosphino)methane- $\kappa^2 P:P'$]-bis[(saccharinato- κN)palladium(I)] dichloromethane solvate

The dimeric palladium(I) saccharinate complex $[Pd_2(sac)_2-(dppm)_2]$, has been characterized as its dichloromethane solvate, *i.e.* $[Pd_2(C_7H_4NO_3S)_2(C_{25}H_{22}P_2)_2]\cdot CH_2Cl_2$. The complex features a Pd-Pd bond bridged by two dppm ligands, with the saccharinate ligands N-bonded *trans* to the Pd-Pd bond.

Received 10 July 2002 Accepted 12 July 2002 Online 19 July 2002


Comment

The structure determination of [Pd₂(sac)₂(dppm)₂]·CH₂Cl₂, (I), the first for a Pd^I amidate, shows that the saccharinate ligands have replaced the Cl groups in the starting material. The Pd—Pd distance of 2.5962 (6) Å is comparable to that in other dinuclear Pd^I complexes, such as [Pd₂(NO₃)₂(dppm)₂] (2.594 Å; Maekawa et al., 1998a). The Pd₂(dppm)₂ core has a twisted-boat conformation, as has been seen in other dinuclear complexes of this type. This twisting occurs in order to allow the dppm ligands to bridge a relatively short Pd-Pd bond (Maekawa et al., 1998b). The P1-Pd1-Pd2-P2 and P3-Pd1—Pd2—P4 torsion angles are both 51.0 (1)°. The planes of the two saccharinate ligands are approximately orthogonal to each of the PdP₂ planes, but are tilted so that the ligand planes make angles of 160 and 155° with the Pd1-N1 and Pd2-N2 vectors, respectively, allowing a degree of pyramidality at the amide N atoms. The two saccharinate ligands have a cisoid arrangement with respect to the Pd-Pd bond. The two Pd-N bonds [average 2.19 (2) Å] are longer than the Pt-N bond (trans to PPh₃) in cis-[PtCl(sac)(PPh₃)₂] [2.064 (6) Å; Henderson et al., 1999], reflecting the high trans influence of the Pd-Pd bond.

Experimental

[Pd₂(sac)₂(dppm)₂] was isolated in 68% yield from a reaction of [Pd₂Cl₂(dppm)₂] with sodium saccharinate hydrate in refluxing MeOH for 30 min. Crystals, as the dichloromethane solvate, were obtained from CH₂Cl₂–Et₂O solution. ³¹P NMR δ –6.6 p.p.m. Analysis found: C 54.0, H 3.8, N 1.9%; C₆₅H₅₄Cl₂N₂O₆P₄Pd₂S₂ requires: C 54.6, H 3.8, N 2.0%.

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1 The structure of (I), drawn at the 50% probability level (Farrugia, 1997). The CH₂Cl₂ solvent molecule has been omitted.

Crystal data

[DJ (C II NO C) (C II D)]	$D_x = 1.590 \text{ Mg m}^{-3}$
$[Pd_2(C_7H_4NO_3S)_2(C_{25}H_{22}P_2)_2]$	$D_x = 1.390 \text{ Mg m}$
CH_2Cl_2	Mo $K\alpha$ radiation
$M_r = 1430.80$	Cell parameters from 5200
Monoclinic, $P2_1/n$	reflections
a = 13.819 (4) Å	$\theta = 2-26^{\circ}$
b = 22.550 (7) Å	$\mu = 0.92 \text{ mm}^{-1}$
c = 20.230 (6) Å	T = 168 (2) K
$\beta = 108.53 \ (1)^{\circ}$	Block, orange
$V = 5977 (3) \text{ Å}^3$	$0.55 \times 0.50 \times 0.44 \text{ mm}$
7 1	

Data collection

2 ma concentori	
Siemens CCD diffractometer	10 579 reflections with $I > 2\sigma(I)$
ω multi-scans	$R_{\rm int} = 0.026$
Absorption correction: empirical	$\theta_{\rm max} = 26.4^{\circ}$
(Blessing, 1995)	$h = -17 \rightarrow 17$
$T_{\min} = 0.611, T_{\max} = 0.667$	$k = -28 \rightarrow 27$
74 438 measured reflections	$l = -21 \rightarrow 25$
12 130 independent reflections	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0324P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.025$	+ 6.6496 <i>P</i>]
$wR(F^2) = 0.068$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.002$
12 130 reflections	$\Delta \rho_{\text{max}} = 0.56 \text{ e Å}^{-3}$
748 parameters	$\Delta \rho_{\min} = -0.66 \text{ e Å}^{-3}$
H-atom parameters constrained	

H atoms were placed in calculated positions, with $U_{\rm iso}$ 1.2 times that of the carrier C atom, in the riding-model approximation.

Data collection: *SMART* (Siemens, 1994); cell refinement: *SAINT* (Siemens, 1994); data reduction: *SADABS* (Sheldrick, 1996); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank Associate Professor C. E. F. Rickard, University of Auckland, for collection of the X-ray intensity data

References

Blessing, R. H. (1995). Acta Cryst. A51, pp. 33–38.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
Henderson, W., Nicholson, B. K. & McCaffrey, L. J. (1999). Inorg. Chim. Acta, 285, 145–148.

Maekawa, M., Munakata, M., Kuroda-Sowa, T. & Suenaga, Y. (1998a). *Anal. Sci.* **14**, 447–449.

Maekawa, M., Munakata, M., Kuroda-Sowa, T. & Suenaga, Y. (1998b). *Inorg. Chim. Acta*, **281**, 116–119.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.